Senior AI Platform Engineer
Job Purpose and Impact
The Senior AI Platform Engineer for AI Ops in AI & Data Science designs, builds and operates the shared MLOps / LLMOps platform that powers Cargill’s data-science and GenAI products. You will own CI/CD pipelines for data ingestion, model training, evaluation and deployment; automate GPU/CPU orchestration across clouds; and embed Responsible-AI, observability and cost-optimization into every stage of the lifecycle. Success is measured by model-to-production velocity, platform uptime, and total-cost-of-ownership improvements
Key Accountabilities
- Design & Build
- Develop multi-agent workflow automation patterns using Agentic AI
- Process redesign and mapping to agentic workflow patterns
- Architect scalable micro-services that wrap LLM/RAG/Agent workflows (Python).
- Implement robust prompt-engineering patterns, retrieval pipelines, and caching for AI Assistants and AI Agents
- Platform Ops
- Extend evaluation, automated testing, canary rollout, and rollback for AgentOps.
- Profile inference latency, GPU/CPU utilization, and memory; deliver quarterly cost-to-serve reductions
- Operational Excellence
- Own on-call runbooks, SLOs, and incident reviews; embed observability.
- Enablement & Mentoring
- Coach full-stack and data-science peers on GenAI/LLMOps patterns; create internal workshops and tech blogs.
Qualifications
Minimum: 4 years building production software or data platforms .
Typical: 5–8 years, including 2+ years with cloud-native AI/ML or GenAI systems (Azure, AWS, or GCP) or 2+ years of software devlopment
Linkedin 채용 매칭
카길에서 어떤 업무에 적합할 지 알아보십시오. 로그인하여 LinkedIn 프로필에 연결하면 여러분의 기술과 경험을 바탕으로 가장 적합한 일자리 정보를 검색할 수있습니다.
우리의 위치
우리는 전 세계 70개국 이상의 국가에서 고객과 지역사회에 기여하는 것을 자랑 스럽게 생각 합니다. 전 세계 카길 직원들은 안전하고 책임감 있으며, 지속 가능한 방식으로 세상을 풍요롭게 하는데 공헌 하고 있습니다. 우리와 함께 하여 카길에서의 경력이 여러분의 더 높은 목표 달성에 어떤 도움이 되는지 알아 보십시오.